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Abstract. We investigate a collective excitation (Leggett’s mode) corresponding to small fluctuations of
the relative phase of two condensates in two-band superconductor using the effective “phase only” action.
We consider the possibility of observing Leggett’s mode in MgB2 superconductor and conclude that for
the known at present values of the two-band model parameters for MgB2 Leggett’s mode arises above the
two-particle threshold.

PACS. 74.20.Fg BCS theory and its development – 11.10.Wx Finite-temperature field theory

1 Introduction

The problem of collective modes in superconductors is al-
most as old as the microscopic theory of superconductiv-
ity. Bogolyubov [1] and Anderson [2] discovered that den-
sity oscillations can couple to oscillations of the phase of
the superconducting order parameter via the pairing inter-
action. In a neutral system these collective soundlike oscil-
lations are called Bogolyubov-Anderson-Goldstone (BAG)
mode. In a charged system the frequency of this mode is
pushed up to the plasma frequency due to the long-range
Coulomb interaction [3].

Despite the fact that the basic physics of the BAG
and plasma modes in superconductors is well understood
many years ago, it appears that a more modern approach
provides even better insight to the origin and universal
character of these modes allowing also to tackle less settled
questions. A main idea beyond this approach is rather sim-
ple: since the collective modes present usually low energy
degrees of freedom, to study them it is sufficient to have
only an effective Lagrangian (or action) that describes
low-frequency, low-wavelength dynamics of the phase θ
of the pairing field instead of working with the original
Hamiltonian of the system. (Note that although plasmons
are in general high-energy excitations, they still can be
treated using an effective theory [4].)

The most convenient way of deriving such a La-
grangian is to change the variables (see, for example, [4])
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for the complex pairing field Φ→ ∆ exp(iθ) with real mod-
ulus ∆ and phase θ. The simultaneous transformation for
the fermi field ψσ → χσ exp(iθ/2) allows from the begin-
ning to separate in the Hamiltonian the only phase degree
of freedom relevant for the effective theory. In the theory
of superconductivity this replacement of the variables that
resembles a gauge transformation has, in fact, a long his-
tory and it was probably firstly used in [5] and then in [6]
(see also Refs. in the review [7]). More recently this trans-
formation was used by many authors. For example, in [8]
it was used to study the problem of the Galilean invariance
of the effective Lagrangian at T = 0. The finite tempera-
ture time-dependent effective actions for the phase field in
s-wave [9] and d-wave [10] neutral superconductors were
derived addressing an old problem of time-dependent gen-
eralization of the GL theory. It is also convenient to in-
vestigate the plasma mode within this formalism taking
into account the long-distance Coulomb repulsion between
electrons [4,6] (see also more recent papers [11,12]).

Besides these rather commonly known modes there
are also other collective modes such as Carlson-Goldman
mode [13] which can appear when the Coulomb interac-
tion gets screened and Leggett’s mode [14] which is present
in two-band superconductors. Recently Carlson-Goldman
mode has been studied in d-wave superconductors [15] and
colour superconductivity [16] using the approach based on
the modulus-phase variables, but to the best of our knowl-
edge Leggett’s mode has not been considered yet using this
transformation. Thus it would be interesting and instruc-
tive to apply this method to obtain Leggett’s mode.

Physically Leggett’s mode [14] is a collective excitation
corresponding to small fluctuations of the relative phase
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of two condensates in a clean two-band superconductor.
There are some indications that MgB2 superconductor
with Tc = 39 K [17] discovered about one year ago is an
example of such a two-band system. Thus the main results
of the present paper are two-fold and can be summarized
as follows.
i) Leggett’s mode is obtained using the modulus-phase
variables in the path integral formalism;
ii) It is considered whether this mode can be observed in
MgB2 superconductor.

The paper is organized as follows. In Section 2 we in-
troduce the two-band model and represent the partition
function of the system using the Hubbard-Stratonovich
transformations for pairing and Coulomb parts of the in-
teractions. In Section 3 we express the effective thermo-
dynamical potential of the system in the modulus-phase
variables and obtain the system of equations for the su-
perconducting gaps. Then we separate the part which de-
scribes the collective phase modes. In Sections 4 and 5
we derive the dispersion law for Leggett’s mode in neutral
and charged systems, respectively. Section 6 we investigate
the possibility of observing Leggett’s mode in MgB2 su-
perconductor. We conclude in Section 7 with a discussion
and summary of our results.

2 Model two-band Hamiltonian
and Hubbard-Stratonovich transformations

Let us consider the following action (in our notations the
functional integral is expressed via eS)

S = −
∫ β

0

dτ

[
2∑

i=1

∑
σ

∫
d2rψ†

iσ(τ, r)∂τψiσ(τ, r) +H(τ)

]
,

r = (x, y, z) , β ≡ 1
T
, (1)

where the Hamiltonian H(τ) is

H(τ) =
2∑

i=1

∑
σ

∫
d2rψ†

iσ(τ, r)[εi(−i∇) − µ]ψiσ(τ, r)

− 1
2

2∑
i,j=1

∑
σ

∫
dr1

∫
dr2

× ψ†
iσ(τ, r2)ψ

†
iσ̄(τ, r1)Vij(r1; r2)ψjσ̄(τ, r1)ψjσ(τ, r2)

+
1
2

∫
dr1

∫
dr2


 2∑

i=1,σ

ψ†
iσ(τ, r1)ψiσ(τ, r1) − n




× Vc(r1 − r2)


 ∑

j=1,σ′
ψ†

jσ′ (τ, r2)ψjσ′ (τ, r2) − n


 . (2)

Here ψiσ(τ, r) is a fermion field with the spin σ =↑,
↓, σ̄ ≡ −σ, i, j = 1, 2 is the band index, εi(k) =
k2/2mi is the dispersion law in ith band with the effec-
tive mass of the carriers mi, τ is the imaginary time and

Vij(r1; r2) = Vijδ(r1 − r2) is an attractive short-range po-
tential, Vc(r1 − r2) is the long range Coulomb interaction,
n is the neutralizing background charge density. Through-
out the paper we call the superconducting system neutral
if the last term of equation (2) is omitted and charged if
this term is taken into account. Even in the latter case the
whole superconductor remains, of course, neutral due to
the neutralizing ionic background. Throughout the paper
� = kB = 1 units are chosen.

Introducing Nambu variables

Ψi(τ, r) =
(
ψi↑(τ, r)
ψ†

i↓(τ, r)

)
,

Ψ †
i (τ, r) =

(
ψ†

i↑(τ, r) ψi↓(τ, r)
)

(3)

we rewrite the action as a sum

S = S0 + Spair + SC (4)

of free

S0 =

−
∫ β

0

dτ
∫

dr
2∑

i=1

Ψ †
i (x)[Î∂τ + τ3(εi(−i∇) − µ)]Ψi(x),

(5)

pairing

Spair =
∫ β

0

dτ
∫

dr
2∑

i,j=1

VijΨ
†
i τ+Ψi(x)Ψ

†
j τ−Ψj(x), (6)

and Coulomb

SC = −1
2

∫ β

0

dτ
∫

dr1

∫
dr2

(
2∑

i=1

Ψ †
i (x)τ3Ψi(x) − n

)

× Vc(r1 − r2)


 2∑

j=1

Ψ †
j (x)τ3Ψj(x) − n


 (7)

parts. Here τ± = (τ1 ± iτ2)/2, τλ (λ = 1, 2, 3) are Pauli
matrices.

The easiest way to treat Spair is to introduce Hubbard-
Stratonovich fields Φi for each band, so that

Spair(Φi, Φ
∗
i , Ψi, Ψ

†
i ) =

∫ β

0

dτ
∫

dr

[
− g11|Φ1(x)|2

− g22|Φ2(x)|2 + g12(Φ∗
1(x)Φ2(x) + Φ∗

2(x)Φ1(x))

+
2∑

i=1

gii(Φ∗
i (x)Ψ

†
i τ−Ψi(x) + Φi(x)Ψ

†
i (x)τ+Ψi(x))

]
, (8)

where the coupling constants gij are expressed in terms of
the original constants Vij

g11 = V11

(
1 − V 2

12

V11V22

)
, g22 = V22

(
1 − V 2

12

V11V22

)
,

g12 = V12

(
1 − V 2

12

V11V22

)
· (9)
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For the repulsion part only one Hubbard-Stratonovich
field ϕ is necessary:

SC(ϕ, Ψi, Ψ
†
i ) =∫

dτ
∫

dr1

∫
dr2

[
− 1

2
eϕ(τ, r1)V −1

c (r1 − r2)eϕ(τ, r2)

+ ieϕ(τ, r1)

(
2∑

i=1

Ψ †
i (x)τ3Ψi(x) − n

)
δ(r1 − r2)

]
. (10)

Thus the partition function of the system can be pre-
sented as

Z =
∫

DΦiDΦ∗
i DϕDΨiDΨ †

i exp

[
S0

(
Ψi, Ψ

†
i

)

+ Spair

(
Φi, Φ

∗
i , Ψi, Ψ

†
i

)
+ SC

(
ϕ, Ψi, Ψ

†
i

)]
. (11)

3 Effective potential in the modulus-phase
variables

3.1 Modulus-phase variables

The modulus-phase variables ∆i and θi in two bands are
introduced exactly as discussed in [7]:

Φi(τ, r) = ∆i(τ, r) exp[iθi(τ, r)],

Ψi(τ, r) =
(

eiθi(τ,r)/2 0
0 e−iθi(τ,r)/2

)
Υi(τ, r), (12)

making the moduli ∆i of the pairing field real. We note
that since we restricted our analysis to T < Tc in
zero external field, so that no vortices are present, the
phases θi(τ, r) are non-singular, so that the transforma-
tions (12) do not change the magnetic field “seen” by
quasiparticles. Now absorbing g11 and g22 in ∆1 and ∆2

and integrating out neutral fermions Υi we obtain (see e.g.
[7,15,19])

Z =
∫
∆iD∆iDθiDϕ exp[−βΩ(∆i, θi, ϕ)] (13)

with the effective thermodynamical potential

βΩ(∆i, θi, ϕ) =∫ β

0

dτdr
[
∆2

1

g11
+
∆2

2

g22
− 2g12
g11g22

∆1∆2 cos(θ1 − θ2)
]

+
∫ β

0

dτdr1dr2

[
1
2
eϕ(τ, r1)V −1

c (r1, r2)eϕ(τ, r2)

+ ieϕ(τ, r1)nδ(r1 − r2)

]
− Tr LnG−1

1 − Tr LnG−1
2 ,

(14)

where the Green’s function

G−1
i ≡ G−1

i −Σi(∂θi) =

− Î∂τ + τ3

( ∇2

2mi
+ µ

)
+ τ1∆i(τ, r) −Σi(∂θi) (15)

with

Σi(∂θi) ≡ τ3

[
i∂τθi

2
− ieϕ(τ, r) +

(∇θi)2

8mi

]

− Î

[
i∇2θi

4mi
+

i∇θi(τ, r)∇
2mi

]
(16)

that depends only on the time and space derivatives of θi,
but not on the phase θi itself. Then we can represent Ω
as the sum

Ω(∆i, θi, ϕ) � Ωkin(∆i, ∂θi, ϕ) +Ωpot(∆i, θi, ϕ), (17)

where

Ωkin(∆i, ∂θi) = T

2∑
i=1

Tr
∞∑

n=1

1
n

(GiΣi)n

∣∣∣∣
∆i=const.

(18)

is the sum of the energies of the phase fluctuations in each
band and

Ωpot(∆i, θi, ϕ) =

(
∆2

1

g11
+
∆2

2

g22
− 2g12
g11g22

∆1∆2 cos(θ1 − θ2)

− Tr LnG−1
1 − Tr LnG−1

2

)∣∣∣∣∣
∆i=const.

+
∫ β

0

dτdr1dr2

×
[

1
2
eϕ(τ, r1)V −1

c (r1, r2)eϕ(τ, r2)

+ ieϕ(τ, r1)nδ(r1 − r2)

]
. (19)

In Ωpot the most important for the appearance of
Leggett’s mode term is the Josephson coupling energy of
the condensates in two bands. This term explicitly de-
pends on the relative θ1 − θ2 phase of two condensates.

3.2 The system of gap equations

As pointed out in [14] while V11 and V22 are completely
fixed by the physics of the problem, the phase of V12 is a
matter of convention (corresponding to the choice of the
relative phases of the Bloch waves in the two bands). As
in [14] we choose V12 to be real and positive. In this case
the condition of minima of Ωpot with respect to θ1 − θ2
gives θ1 = θ2, so that the system of the gap equations
∂Ωpot/∂∆i = 0 has the form


∆1 − g12

g22
∆2 −∆1g11N1F (∆1) = 0,

∆2 − g12
g11
∆1 −∆2g22N2F (∆2) = 0,

(20)
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M−1
i =

�−Ω2
n

iΠ33(K) + iΛαβ(K)KαKβ − iΩnKα
iΠα

03(K) − iΩnKα
iΠα

30(K) 2iΩn
iΠ33(K) − 2Kα

iΠα
30(K)

−2iΩn
iΠ33(K) + 2Kα

iΠα
30(K) −4iΠ33(K)

�
(24)

where Ni = mipFi/(2π2) is the density of states (per spin)
in ith band (pFi is the Fermi momentum) and

F (∆i) =
∫ ωD

0

dξ√
ξ2 +∆2

i

tanh

√
ξ2 +∆2

i

2T
(21)

with the Debye frequency, ωD which is for simplicity as-
sumed to be the same in each band.

This system of the equation can be transformed
to the standard form derived by Moskalenko [20] and
Suhl et al. [21]

{
∆1[1 − V11N1F (∆1)] = ∆2V12N2F (∆2),

∆2[1 − V22N2F (∆2)] = ∆1V12N1F (∆1).
(22)

It appears, however, that in contrast to Leggett’s ap-
proach [14] there is no need of explicit use of the sys-
tem (22) to obtain the spectrum of collective excitations.
In what follows we assume that the values of the super-
conducting gaps ∆1(T ) and ∆2(T ) can, in principle, be
determined from the system (22) or taken directly from
the experiment.

3.3 Effective potential for the collective modes

Since the values of the gaps are fixed, i.e. there are no
amplitude fluctuations that is reasonable for T � Tc it is
sufficient to consider only the part of effective potential
depending on θi and ϕ.

Following the same route as described, for example, in
references [9,10,15], we arrive at the following frequency-
momentum representation

βΩ{θi, ϕ} =
T

8

∞∑
n=−∞

∫
dK

(2π)3

(
ϕ(−K)4e2V −1

c (K)ϕ(K)

+
8g12
g11g22

∆1∆2(θ1(−K) − θ2(−K))(θ1(K) − θ2(K))

+
2∑

i=1

[
θi(−K) eϕ(−K)

]M−1
i

[
θi(K)
eϕ(K)

])
, (23)

where the Josephson term was expanded up to quadratic
term and unimportant constant was dropped out. The ma-
trix Mi in (23) is

see equation (24) above

and we introduced short-hand notations K = (iΩn,K)
with Ωn = 2πnT and K being 3D vector (summation over
dummy indices α, β = 1, 2, 3 is implied). In equation (24)
iΛαβ = iΛαβ

0 + iΠαβ
00 is the bare (unrenormalized by the

phase fluctuations) superfluid stiffness, where the current-
current polarization function, iΠ00, is

iΠαβ
00 (iΩn,K) ≡

T

∞∑
l=−∞

∫
d3k

(2π)3
iπ00(iΩn,K; iωl,k)vFiα(k)vFiβ(k) (25)

with the Fermi velocity vFiα(k) = ∂ξi(k)/∂kα|k=kF i (here
ξi(k) = εi(k) − µ); the density-density polarization func-
tion, iΠ33, is

iΠ33(iΩn,K) ≡ T

∞∑
l=−∞

∫
d3k

(2π)3
iπ33(iΩn,K; iωl,k)

(26)

and the density-current polarization function, iΠα
03 is

iΠα
03(iΩn,K) ≡

T
∞∑

l=−∞

∫
d3k

(2π)3
iπ03(iΩn,K; iωl,k)vFiα(k) . (27)

iπλκ in equations (25–27) is given by

iπλκ(iΩn,K; iωl,k) ≡
tr[iG(iωl+iΩn,k+K/2)τλiG(iωl,k−K/2)τκ] , (τ0 ≡ Î) ,

(28)

where the neutral fermion Green’s function coincides with
the usual Green’s function of the BCS theory

iG(iωn,k) = − iωnÎ + τ3ξi(k) − τ1∆i

ω2
n + ξ2i (k) +∆2

i

,

ωn = π(2n+ 1)T. (29)

iΛαβ
0 above is the first order contribution to the superfluid

stiffness:

iΛαβ
0 =

∫
d3k

(2π)2
ni(k)m−1

i δαβ =
ni

mi
δαβ , (30)

with

ni(k) = 1 − ξi(k)
Ei(k)

tanh
Ei(k)
2T

,

Ei(k) =
√
ξ2i (k) +∆2

i . (31)

Writing equation (23) we omitted the time derivative term
linear in the phase (see e.g. [10,11]) which is irrelevant for
the present analysis.
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For the purpose of completeness we give the explicit
expressions for the polarizations (25–27) in Appendix A.
These expressions are important if, for example, one is in-
terested in the damping of the collective modes. In what
follows we consider these polarizations in the hydrody-
namic limit, Ωn = 0 and K → 0 at T = 0. In this
case iΠ33(0,0) = −2Ni, iΛαβ(0,0) = iΛαβ

0 = ni/mi =
2Niv

2
Fi/3 and iΠα

03(0,0) = 0. Recall that Ni is the den-
sity of states per spin, while in [14] the density of states
per particle was used.

As was mentioned above, calculating the values
iΠ33(0,0) and iΛαβ(0,0) there is no need to substitute
the gap equations (22) since the coupling constants Vij do
not enter iΠ33(0,0) and iΛαβ(0,0), but enter only in the
Josephson coupling term. By contrast, the original deriva-
tion of Leggett [14] (see after Eq. (3.8)) explicitly uses the
system (22). Note that in a more simple case of one band
system the Josephson term is absent and one immediately
gets the BAG mode without referring to the gap equa-
tion [8].

We note also that while iΠα
03 is zero for the case con-

sidered in the present paper, this term is crucial for the
existence of Carlson-Goldman mode [13,15].

Having the general representation for the thermody-
namical potential Ω{θi, ϕ} we are ready to obtain the
spectrum of collective excitations. We start with a more
simple case of a neutral superconductor.

4 Collective excitations in a neutral
superconductor

To consider neutral superconductor one can formally set
e = 0 in (23), so that the terms with the electric potential
ϕ disappear from the equations and we arrive at

βΩ{θi} =
T

8

∞∑
n=−∞

∫
dK

(2π)3

(
8V12

V11V22 − V 2
12

×∆1∆2(θ1(−K) − θ2(−K))(θ1(K) − θ2(K))

+
2∑

i=1

θi(−K)M−1
θi θi(K)

)
,

(32)

where

M−1
θi = −Ω2

n
iΠ33(K) + iΛαβ(K)KαKβ

− iΩnKα
iΠα

03(K)

− iΩnKα
iΠα

30(K). (33)

As was already mentioned, we consider Mθi in hydrody-
namic (Ωn = 0, K → 0) limit at T = 0:

M−1
θi

= 2Ni(Ω2
n + c2iK

2), (34)

where c2i = v2
Fi/3 is the velocity of the BAG mode in ith

band, so that equation (32) becomes

βΩ{θi} =

T

8

∞∑
n=−∞

∫
dK

(2π)3
[
θ1(−K) θ2(−K)

]
Θ−1

[
θ1(K)

θ2(K)

]
, (35)

with

Θ−1 =

[
M−1

θ1
+A −A

−A M−1
θ2

+A

]
,

A ≡ 8V12∆1∆2

V11V22 − V 2
12

· (36)

Finally, solving the equation detΘ−1 = 0 for col-
lective modes and making an analytical continuation
iΩn → ω + i0 we arrive at

ω2 =
1
2

[
ω2

0 + (c21 + c22)K
2

±
√
ω4

0 + (c21 − c22)2K4 − 2ω2
0

N1 −N2

N1 +N2
(c21 − c22)K2

]

(37)

with

ω2
0 =

N1 +N2

2N1N2

8V12∆1∆2

V11V22 − V 2
12

· (38)

(For a direct comparison with [14] recall that the density
of states used here is twice less.) In the limit K → 0
(vFiK � ω0) one obtains from (37)

ω2 = c2K2, c2 =
N1c

2
1 +N2c

2
2

N1 +N2
for “–”;

ω2 = ω2
0 + v2K2, v2 =

N1c
2
2 +N2c

2
1

N1 +N2
for “+”. (39)

The first solution of (39) corresponds to BAG mode,
while the second solution is Leggett’s mode. This collec-
tive mode is only possible if ω2

0 > 0. Since V12 > 0 this
implies that Leggett’s mode exists for V11V22 − V 2

12 > 0.

5 Collective excitations in a charged
superconductor

As was discussed in Introduction the long-distance
Coulomb interaction has a drastic influence on the BAG
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Table 1. The estimate of the frequency ω0. The values of the superconducting ∆1 = 1.8 meV and ∆2 = 6.8 meV from [28] are
used.

Reference λ11 λ22 λ12 λ21 ω0, meV ω0/2∆1

Liu et al. [24] and Barabash [26] 0.96 0.28 0.16 0.22 8.9 2.5

Golubov et al. [25] 1.017 0.448 0.213 0.155 6.5 1.8

mode transforming it in the plasma mode. Here we con-
sider how Leggett’s mode is affected by the Coulomb in-
teraction. Let us rewrite action (23) in the hydrodynamic
limit as one matrix

βΩ{θi, ϕ} =
T

8

∞∑
n=−∞

∫
dK

(2π)3
θ1(−K) θ2(−K)

× eϕ(−K)M−1


θ1(K)
θ2(K)
eϕ(K)


 , (40)

where

M−1 =




M−1
θ1

+ A −A −4iΩnN1

−A M−1
θ2

+ A −4iΩnN2

4iΩnN1 4iΩnN2 4(2N1 + 2N2 + V −1
c (K))




(41)

and M−1
θ1

and A are given by equations (34) and (36),
respectively. As one can readily see, setting e = 0 in equa-
tion (40) we reduce the action (40) with 3×3 matrix M−1

that describes the phase fluctuations in the charged sys-
tem to the action (35) with 2×2 matrix Θ−1 that describes
the collective excitations in a neutral system.

Again the spectrum of collective excitations can be
found solving the equation detM−1 = 0. Neglecting
the inverse of Coulomb interaction in the limit K → 0
(V −1

c (K) = K2/(4πe2) → 0), we obtain

Ω2 = ω2
0 + v2K2, v2 =

(N1 +N2)c21c
2
2

N1c21 +N2c22
· (42)

Since the inverse Coulomb potential ∼ K2 is neglected,
the equation for the collective modes has the only solution
describing Leggett’s mode. Comparing (39) and (42) one
can see that in accordance with [14] the value of ω0 is
insensitive to the Coulomb interaction but the velocity v
is affected. It is interesting that the value of v itself does
not depend on the explicit form of Vc(K).

Including the Coulomb interaction Vc(K) one can also
check that the equation detM−1 = 0 has a plasma mode
as a solution. Indeed considering the simplest V12 = 0
(A = 0) case we obtain the plasma frequency for in-phase
oscillations in both bands

Ω2
p = 8πe2(N1c

2
1 +N2c

2
2) = 4πe2

(
n1

m1
+
n2

m2

)
· (43)

6 Implications for MgB2

There are currently many indications that the recently
discovered MgB2 superconductor [17] can be described

by the classical two-gap model [20,21] which convincingly
fits the specific heat [22] and penetration depth measure-
ments [23]. In particular, in [24–26] even the values of the
coupling constants for the system of equations (22) for the
two-gap and two-band model of MgB2 were given.

We note that one of the alternative explanations of
the observed anisotropy of the upper critical field uses a
model with the anisotropic s-wave pairing [27] which is
also rather close to the two-gap and two-band scenario.

To be experimentally observable Leggett’s mode
should have the value of ω0 in (42) well separated from
the two-particle threshold given by the smallest gap, ∆1.
Here we estimate the value of ω0 using recently suggested
values of the coupling constants that enter the system
of equations (22). Introducing the dimensionless coupling
constants, λij = NiVij that are often used for the descrip-
tion of the two-band model, we may rewrite equation (38)
in the following form

ω2
0 =

λ12 + λ21

λ11λ22 − λ12λ21
4∆1∆2. (44)

Our estimates of ω0 are summarized in Table 1.
They show that for the values of the two-band model

parameters known at present for the two-band model
of MgB2, Leggett’s mode arises above the two-particle
threshold, ω0/2∆1 > 1, and unlikely to be observed. We
do not exclude, however, that Leggett’s mode can be ob-
served in MgB2 if the values of the coupling constants are
revised, so that the interband coupling constants λ12 and
λ21 would become smaller allowing ω0/2∆1 < 1. The ob-
servation of Leggett’s mode would provide an additional
insight to the underlying physics of this superconductor.

7 Conclusion

To conclude, we readdressed the collective excitations of
the relative phase of the two condensates in a clean two-
band superconductor using the effective “phase action”
formalism. This formalism has proved itself as a conve-
nient and economic method of the investigation of the
collective modes in superconductors. Our estimates of the
lowest frequency of Leggett’s mode for MgB2 show that it
can hardly be observed in this superconductor.

This work was supported by the research project 20-65045.01
by the SCOPES-project 7UKPJ062150.00/1 of the Swiss Na-
tional Science Foundation.
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Appendix A: The expressions
for polarizations Π ij

The expressions for the polarization functions Πλκ (for
simplicity we omit the band index i) are (see e.g. [9,10])

[
Παβ

00 (iΩn,K)

Π33(iΩn,K)

]
= −

∫
d3k

(2π)3

{
1
2

(
1 − ξ−ξ+ ±∆2

E−E+

)

×
[

1
E+ + E− + iΩn

+
1

E+ + E− − iΩn

]

× [1 − nF (E−) − nF (E+)]

+
1
2

(
1 +

ξ−ξ+ ±∆2

E−E+

)[
1

E+ − E− + iΩn

+
1

E+ − E− − iΩn

]
[nF (E−) − nF (E+)]

}
V±(k) ,

V±(k) ≡
[
vFα(k)vFβ(k), “+”;

1, “-”.

]
, (A.1)

and
Πα

03(iΩn,K) =
∫

d3k

(2π)3

{(
ξ+

2E+
− ξ−

2E−

)

×
[

1
E+ + E− + iΩn

− 1
E+ + E− − iΩn

]

× [1 − nF (E−) − nF (E+)] +
(
ξ+

2E+
+

ξ−
2E−

)

×
[

1
E+ − E− + iΩn

− 1
E+ − E− − iΩn

]

× [nF (E−) − nF (E+)]

}
vFα(k), (A.2)

where ξ± ≡ ξ(k±K/2), E± ≡ E(k±K/2). One can also
check that Πα

30(iΩn,K) = Πα
03(iΩn,K). The second term

in equations (A.1) and (A.2) gives the contribution of the
thermally excited quasiparticles (i.e. “normal” fluid com-
ponent). This is the term responsible for the appearance
of the Landau terms in the effective action [9,10].
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